
CS410/510
Advanced Programming

Mark P. Jones and Andrew P. Black

1



Your Instructors

• Mark P. Jones
• email mpj, 'phone 503 725 3206
• office hours: Mon 1-3pm or by apt

• Andrew P. Black
• email black, 'phone 503 725 2411
• office hours: Mon 4-5.30pm, 

                      Thu 10:30-11:50am

2



What is a Good Program?

3



What is this course about?

• Teaching you to become better programmers
• Programs have two purposes:
– To instruct a computer

° So the program must be executable
– To communicate with people

° So the program must be an object of study
- for tools, and
- for programmers

• Many students never learn the second purpose!
– So we are going to focus on it

4



“After completion of this course, 
students will be able to:

1. Select appropriate names for their functions and 
methods.

2. Decompose methods and functions into components 
at the same level of abstraction.

3. Analyze a problem and determine what problem 
elements to represent as functions or objects.

4. Deal with complex data objects as whole entities, 
rather than by twiddling with their elements.

5. Effectively use parameterization and inheritance to 
promote reuse.

5



... continued:

6. Use closures to encapsulate computations.

7. Build recursive data structures and recursive 
operations over those data structures.

8. Use tools such as type systems, unit tests and random 
testing to guarantee the integrity of their programs.

9. Compose more complex programs from simpler parts.

10. Write the simplest possible program that solves a given  
problem while explaining to the reader how it solves 
that problem.”

6



Key Ideas in Programming

• Whole Object
• The reason to use high-level data structures is to manipulate them at 

a high level

• Composition
• Build complex objects and processes from simpler parts;
• apply this idea recursively

• Recursive Data Structures and their operations

• First class functions

• First class continuations

• Parameterization and Inheritance

7



Key Tools

• Test-driven Development (TDD)
• SUnit, HUnit and Quickcheck

• Refactoring
• Embrace change!

• Don’t plan for generality; you ain’t gona need it

• Profiling
• First get it right, and then make it fast

• Metaprogramming

• Literate Programming

8



Strive for Simplicity

- Kent Beck: Extreme Programming explained, p. 109

9

What Is simplest? 
So, the definition of the best design is the simplest design that runs 

all the test cases. The effectiveness of this definition turns on, what do 
we mean by simplest? 

Is the simplest design the one with the fewest classes? This would 
lead to objects that were too big to be effective. Is the simplest design 
the one with the fewest methods? This would lead to big methods and 
duplication. Is the simplest design the one with the fewest lines of 
code? This would lead to compression for compression's sake and a loss 
of communication. 

Here is what I mean by simplest-four constraints, in priority order. 

1. The system (code and tests together) must communicate every- 
thing you want to communicate. 

2. The system must contain no duplicate code. (1 and 2 together 
constitute the Once and Only Once rule). 

3. The system should have the fewest possible classes. 
4. The system should have the fewest possible methods. 

The purpose of the design of the system is, first, to communicate the 
intent of the programmers and, second, to provide a place for the logic 
of the system to live. The constraints above provide a framework within 
which to satisfjr these two requirements. 

If you view the design as a communication medium, then you will 
have objects or methods for every important concept. You will choose 
the names of classes and methods to work together. 

Constrained as you are to communicate, then you must find a way 
to eliminate all the duplicated logic in the system. This is the hardest 
part of design for me, because you first have to find the duplication, 
and then you have to find a way to eliminate it. Eliminating duplication 
naturally leads you to create lots of little objects and lots of little meth- 
ods, because otherwise there will inevitably be duplication. 

But you don't just create new objects or methods for the fun of it. If 
you ever find yourself with a class that does nothing and communicates 
nothing or a method that does nothing and communicates nothing, 
then you delete it. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .  

Chapter 17 Design Strategy 109 

:



What about the Programming Language?
• We believe that unnecessary complexity in the language gets 

in the way of writing elegant, simple, programs

• For most of the course, we will be using two specific 
languages, both rather small and elegant:
• Haskell — pure, functional

• Smalltalk — effectful, object-oriented

• Most programming techniques will be applicable to both 
languages!

• What you learn from programming in these languages will 
transfer to other languages

… even those not invented yet 

10



Course Organization

• This is an experimental course (eXtreme Teaching)
• Don't expect to find everything well-prepared far in advance
• Do expect us to respond to feedback as the course evolves

• Rapid Feedback is important
• Small assignments every week, sometimes every class 

meeting
• Programming in class

• We emphasize code that "speaks" to us
• Come to class prepared to talk about your code
• Be open to criticism: almost all code can be improved upon

11



Provisional Schedule:

12

Week Dates Topics

1 January 6, 8 Introductions: Instructors, Course, Haskell, Smalltalk

2 13, 15 Test Driven Development, Unit Testing, QuickCheck

3 20, 22 Composition, Whole Object Programming

4 27, 29 Recursive Data Structures, Polymorphism, Inheritance

5 February 3, 5 Extended Example: Finite State Machines

6 10, 12 ... continued

7 17, 19 Metaprogramming, Aspect-oriented Programming

8 24, 26 Higher-order Functions, Blocks, Parsers, Continuations

9 March 3, 5 Profiling

10 10, 12 Additional Topics



Assessment

• Weekly homework assignments (sometimes in 
groups)

• Project, starting around the end of week 6, in small 
groups, presentations in week 10 and finals week

• No midterm, no final!

13


